Светомузыка ч. 2

30-11-2012, 19:06 От: admin Посмотрели: 1120

6. Блок управления мощностью

    Как уже отмечалось выше, БУМ является неотъемлемым элементом во всех цепях светового инструментария (см. рис. 9). Чтобы свободнее оперировать при выборе этого элемента, рассмотрим, какие существуют способы регулирования мощности.


Рисунок 19

    Источниками света и электрическими машинами можно управлять двумя способами: в электрическом канале и непосредственно на выходе устройства. Основные приемы управления световым потоком в оптическом канале указаны на рис. 19. Простейший "механический" способ - перекрытие светового луча круглой, щелевой или иного вида диафрагмой. Другой подобный прием - изменение коэффициента пропускания яркостиого фильтра. Это или перемещаемый поперек луча оптический клин (а чаще -два движущихся встречно клина) или пара поляризаторов, вращающихся один относительно другого. Такие приемы известны уже давно. А появившаяся в последнее время светоклапанная техника позволяет, как уже отмечалось выше, изменять непосредственно сам коэффициент пропускания яркостного фильтра. В фотохромном способе этого достигают выбором материала, реагирующего на определенный вид излучения. Суть электронно-оптического способа состоит в том, что под действием электрической энергии меняются некоторые свойства материала фильтра - диэлектрическая проницаемость, коэффициент преломления, степень анизотропности и т. п. Оптическая система у световых клапанов построена так, что эти изменения визуализируются и пред стают как изменения оптической плотности фильтра.
    Все эти способы регулирования привлекают тем, что они не влияют на спектральную характеристику светового потока. Механический способ к тому же доступен и прост. При необходимости дистанционного управления в устройствах механического перекрытия светового потока могут быть использованы разного рода электрические машины весьма малой мощности, так как их функции - перемещать рьиажки диафрагмы, поворачивать на пути луча листки фольга, вращать поляризаторы и т. д. - не требуют больших усилий. Правда, у этих механических устройств есть недостаток - инерционность. Но тем не менее они уже нашли применение в различных СМИ.
    Рассмотрим теперь регулирование мощности в электрическом канале (рис. 20).
    Простейший способ - использование трансформаторных регуляторов напряжения -обеспечиваетуправление мощности до нескольких киловатт (в основном вручную). Электрические усилители позволяют управлять значительной мощностью в цепи нагрузки с помощью очень слабых сигналов. Среди полупроводниковых усилителей транзисторы обеспечивают регулирование мощности до 2,5 кВт, тиристоры до 100 кВт. Верхняя реальная граница электронных усилителей на вакуумных лампах широкого применения 100 Вт, тиратрона примерно К) кВт, магнитные усилители - сравнимы по мощности с тиристорами.


Рисунок 20

    Способы управления .электрической мощностью можно разделить на два основных вида. Амплитудное регулирование - это изменение амплитуды напряжения или тока в нагрузке. Его реализуют посредством переменных резисторов, регулировочных трансформаторов, магнитных, электронных (в том числе и полупроводниковых) усилителей. Импульсное регулирование основано на периодическом прерывании тока, протекающего через нагрузку. При управлении источником света при частоте прерывания более 50 Гц из-за инерционности зрения и самого источника пульсации яркости становятся незаметными. Изменяя соотношение между временем протекания и отсутствия тока или, иначе говоря, меняя скважность импульсов, можно менять среднюю мощность, а следовательно, и яркость источника света или скорость электродвигателя. Импульсное регулирование реализуют с помощью тиратронов, тиристоров, электронных ламп, транзисторов и магнитных усилителей, работающих в ключевом режиме.
    Этот вид управления позволяет полностью использовать энергетические возможности электронных приборов за счет снижения рассеиваемой на них мощности, однако по схеме БУМ получается сложнее, чем при амплитудном регулировании. Кроме того, при большом токе из-за крутых фронтов и спадов импульсов эти регуляторы создают значительные сетевые и радиопомехи, для борьбы с которыми необходимы тщательная экранировка всего устройства и применение заградительных фильтров на входе и выходе БУМ.
    После этого краткого обзора следует указать на особенности управления различными источниками света и электрическими машинами.
    Для ламп накаливания одинаково пригодны и амплитудный и импульсный методы управления мощностью. Из-за возникновения бросков тока при включении этих ламп БУМ в течение некоторого времени должен выдерживать ток, значительно превышающий номинальный. Это особенно необходимо учитывать в случае применения приборов с малой перегрузочной способностью (транзисторов, тиристоров). Это же явление существенно усложняет расчет импульсных регуляторов. При уменьшении длительности импульсов среднее значение мощности, подводимой к лампе, невелико, следовательно, нить работает при пониженной температуре и сопротивление ее падает. Так как при этом амплитудное значение напряжения в импульсе сохраняется, амплитудное значение тока заметно возрастает (в 2-3 раза) по сравнению с номинальным. Предупреждению этих неприятных явлений способствует подпитывание ламп пороговым напряжением Unop = 10 - 15 % UHQM когда нить накала уже нагрета, но еще не светится: R « (2 -3) R^ [28].
    Для изменения яркости люминесцентной лампы также используют оба метода регулирования. Регулирующее звено включает в сеть последовательно с лампой и балластной нагрузкой. На постоянном токе после зажигания лампы ее яркость можно изменять обычным реостатом от максимальной до определенного нижнего предела, за которым ее горение становится неустойчивым. В качестве балластного звена используют резистор. При подключении к источнику переменного тока в лампе в каждом полу пер иоде происходит очередное возникновение разряда. В этом случае балластной нагрузкой служит дроссель (при замене дросселя резистором отдача уменьшается почти вдвое, и для восстановления яркости необходимо увелггчивать напряжение).
    У ксеноновых ламп и при амплитудном, и при импульсном управлении мгновенное значение тока не должно опускаться ниже определенного значения - тока гашения. Поэтому уменьшать световой поток до нуля приходится посредством диафрагмы.
    У импульсных ламп, работающих в стробоскопическом режиме, можно управлять средней мощностью излучения увеличением частоты следования вспышек. Но следует иметь в виду, что превышение некоторой предельной частоты сопряжено с уменьшением энергии каждой вспышки, а далее - с появлением самопроизвольных вспышек.
    Управление интенсивностью лазера осуществляется с помощью специальных безынерционных фотоэлектронных модуляторов, позволяющих изменять интенсивность луча согласно любой частоте управляющего сигнала.
    Обратимся теперь к особенностям управления исполнительными механизмами.
    Для соленоидов изменение направления тока в обмотке не влияет на характер работы. Способ регулирования мощности может быть любым. В зависимости от конструкции характеристика соленоида может быть линейной или нелинейной.
    Частотой вращения ротора электродвигателей постоянного тока управляют регулированием мощности либо в цепи ротора, либо в цепи обмотки главных полюсов при постоянном напряжении на роторе. Причем для роторного управления подходят и амплитудный и импульсный способы регулирования. Импульсное регулирование в сочетании с механическим или электрическим торможением обеспечивает высокую стабильность и точность работы.
    Для асинхронных двигателей применяют амплитудный и фазовый способы управления частотой вращения ротора. При амплитудном управлении частота зависит от напряжения на обмотке возбуждения, при фазовом -от сдвига фаз токов в обмотках возбуждения и управления. Сдвиг фаз обеспечивает фазорегулятор. Этот способ по сравнению с амплитудным обеспечивает большую линейность регулировочной характеристики при постоянной жесткости механической характеристики.
    Рассмотрим основные виды БУМ, ограничивая обзор полупроводниковыми узлами (другие применяют сейчас в СМИ довольно редко; подробнее о них можно узнать в предыдущих изданиях [24, 25]).
    Среди транзисторных БУМ наибольшее распространение в практике СМИ получили блоки, работающие в импульсном режиме. В них управляющий сигнал с выхода детектора преобразуется широтно-импульсным модулятором (ТЛИМ) в импульсы с переменной длительностью, соответствующей управляющему напряжению. Сформированные импульсы после усиления мощности поступают к источникам света. Если частота следования импульсов находится в пределах 50-400 Гц и фронты импульсов крутые, рассеиваемая на транзисторах мощность определяется, в основном, сопротивлением транзисторов в режиме насыщения.
    Тиристор - это полупроводниковый аналог тиратрона, применяемый для импульсного управления мощностью в цепях переменного тока. Тиристор выбирают по среднему значению тока в нагрузке и значениям прямого к обратного напряжений. Предельные значения тока и напряжения тиристора сильно зависят от эффективности отвода тепла от его кристалла, поэтому важно обеспечить его надежное охлаждение.
    Тиристором, как и тиратроном, управляют, изменяя время подачи напряжения на управляющий электрод относительно начала полу пер иода питающего напряжения. После открывания тиристора цепь управления уже не влияет на его состояние, поэтому в качестве управляющего можно применять пульсирующее или импульсное напряжение. Обычно используют один из четырех основных способов управления тиристорами: амплитудный, фазовый, фазо-импульсный и так называемый вертикальный1.
    Удобнее использовать в БУМ симметричные тиристоры - симисторы, которые позволяют пропускать и блокировать ток любой полярности при одном и том же управляющем напряжении. Симистор является совмещением в одном корпусе двух встречно-параллельно включенных тиристоров. Схемы включения симисторов не отличаются от тиристорньгх, но здесь требуется больший ток в цепи управляющего электрода.
    В настоящее время в связи с появлением новых полу провод никовых приборов, появилась возможность упростить схемы управления тиристорами. В качестве управляющего элемента широкое распространение получил одно переходный транзистор или, как его еще называют, двухбазовый диод - своеобразный аналог тиратрона тлеющего разряда. Схема БУМ с его использованием приведена на рис. 21.
    Разработанный в СКБ "Прометей", этот БУМ долгое время использовался в различных установках как основной модульный элемент управления яркостью. Управляющее напряжение может быть двух типов: переменным и постоянным. В первом случае его подают через согласующую цепь C1R1 и диод VD1 на базу усилительного транзистора VTL Во втором случае - на элементы R3R5 резистивного моста R2-R5, в диагональ которого и включен диод VD1. Изменяют уровень напряжения смещения в делителе R4R5 переменным резистором R10, приоткрыв или, наоборот, закрыв транзистор VTL В зависимости от этого изменяется время заряда конденсатора С4 до уровня открывания однопереходного транзистора VT3. В этот момент конденсатор С4 разряжается через этот транзистор и обмотку I импульсного трансформатора 77. Формируемый в обмотке II импульс открывает тринистор VS1, последовательно с которым включена лампа EL1. Возможен и комбинированный способ управления: постоянным напряжением с резистора R10 задают исходный постоянный уровень свечения нити накала лампы EL1, а изменяющимся по амплитуде переменным напряжением моделируют яркость лампы. Переменные резисторы RIO - Rk выносят на переднюю панель пульта управления БУМ и ими управляют уже дистанционно яркостью ламп ВОУ [Эти способы подробно описаны в статье Крылова В. Методы управления тиристорами. — В кн.: В помощь радиолюбителю, вып. 43, М.: ДОСААФ, 1973, с. 44-54.].
    Узел управления синхронизирует с частотой сети переменного тока посредством ступени на транзисторе VT4, работающей в ключевом режиме. На базу транзистора подают пульсирующее напряжение с блока питания БП, а с коллектора снимают прямоугольные импульсы, которые после дифференцирования идут на базу синхронизирующего транзистора VT2. В момент прихода синхроимпульса - в начале каждого полупериода -транзистор открывается, разряжает конденсатор С4 и возвращает весь узел управления тринистор ом в исходное состояние.
    Число регуляторов Rfc равно числу каналов управления. Переменным резистором R11 устанавливают начальную пороговую яркость во всех каналах одновременно. Тринистор VS1 и лампа подключены к выходу выпрямительного моста VD2 - VD5. Если их включить без моста, следует выбирать лампы накаливания на напряжение 127 или 110 В. Лучше всего в узле использовать симистор. Схема БУМ остается при этом без изменений.


Рисунок 21

    Необходимо помнить, что тиристоры обладают чувствительностью к токовым перегрузкам. Если трехкратное повышение номинального значения тока нагрузки они могут выдерживать в течение целой секунды, то при коротком замыкании нарастание тока за полпериода (сотые доли секунды) приводит к пробою тиристора. Обычные плавкие предохранители не успевают сработать за столь короткий промежуток времени. Защищают тиристоры от короткого замыкания путем автоматического их закрывания с помощью реле максимального тока (токовый трансформатор на выходе БУМ и т. п.) или быстродействующими плавкими предохр анителями.
    Существенно облегчить работу над СМИ может использование готовых серийных тиристорных световых регуляторов бытового назначения (например, "Светон-300", с выходной мощностью 300 Вт). Для мощных светомузыкальных установок коллективного пользования могут быть применены промышленные тиристорные БУМ серки РТ, предназначенные для регулирования источников света в театре [16, 41, 45]. При оснащении специальным устройством защиты от пусковых импульсов тока, возникающих при включении ламп накаливания, в качестве БУМ можно использовать и регуляторы серий РНТО, предназначеннные для управления электроприводом. Краткие характеристики всех этих регуляторов приведены в табл. 1.

Регулятор
РТ-3-220
РТ-5-220
РТ-10-220
РНМ-3
РНТ-5
РНТО-190-63
РНТО-ЗЗО-63
РНТО-190-250
РНТО-330-250
Uсети. В
260
260
260
220
220
220
380
220
380
Uнагр, В
220
220
220
214
214
190
330
190
330
Iнагр, А
13,5
22,5
45
14
23,3
63
63
250
250
Рвых, кВт
3
5
10
3
5
12
21
48
83
Uynp, В
0-6,5
0-6,5
0-6,5
0-5
0-5
0-6,5
0-6,5
0-6,5
0-6,5

    Использование трехфазных тиристорных БУМ, например РНТТ-ЗЗО-250, РНТТ-330-600 и т. д., позволяет управлять еще большей световой мощностью (в установках световой архитектуры, в спектаклях "Звук и Свет").
    Существуют специальные многоканальные театральные регуляторы освещения (как для люминесцентных, так и для ламп накаливания), содержащие в комплекте дистанционные пульты управления с ручными регуляторами или входами для внешнего электрического сигнала.
    Тиристорные установки серии "Старт" выпускают на 60, 120 и 200 регулируемых цепей, мощность нагрузки в цепи каждого из каналов может быть равной 5 и 10 кВт в зависимости от типа силового регулятора (РТ-5-220 или РТ-10-220). Возможен предварительный набор четырех световых программ с последовательным воспроизведением. Выпускает промышленность и экспериментальные многопрограммные регуляторы "Свет". Унифицированный тиристорный регулятор яркости "Спектр" предназначен для работы с группами люминесцентных ламп общей мощностью 10, 20, 30 и 50 кВт. Возможно также управление и лампами накаливания. Регулятор "Спектр" комплектуют тремя дистанционными пультами управления. Малогабаритные тиристорные регуляторы "Спутник-12" и "Спутник-24" имеют соответственно 12 и 24 регулируемых цепи мощности 3 кВт каждая.
    Последние разработки театральных светорегуляторов, пригодных для использования в СМИ, -одно программные РО1-6, РО1-12, РО1-24 и двухпрограммные РО2-ЗОБ, РО2-60Б соответственно на 6, 12, 24, 30 и 60 каналов управления. У всех этих регуляторов мощность одного канала управления 3 кВт.

7. Пульты управления и запоминающие устройства

    Пульты управления в СМИ иногда выполняют в виде обычной фортепианной клавиатуры, учитывая привычность их для музыканта-исполнителя (рис. 22). Но в этом случае конструкторы вынуждены вводить дополнительные регуляторы, выполняемые в виде ножных и коленных педалей. С подобной ситуацией столкнулись и конструкторы электромузыкальных инструментов, и поэтому нам необходимо максимально учитывать опыт создания пультов ЭМИ [36].
    Но специфические свойства светового материала диктуют необходимость конструирования для СМИ особых пультов, позволяющих добиться наиболее гибкого управления яркостью, цветностью, насыщенностью, выбором форм и движением их по экрану. Вот как, например, решен пулы светорегулятора "Хромон", используемого для спектаклей "Звук и Свет". На панели пульта помещен цветовой график в виде криволинейного треугольника, по которому оператор перемещает ручку управления. Эта ручка связана с тремя цепями регулирования источников трех основных цветов. При положении ручки в центре треугольника работают источники всех трех цветов, в сумме дающие белый свет. При перемещении ручки к вершинам треугольника увеличивается доля соответствующего цвета, а остальные пропорционально и плавно гаснут. Каждой точке треугольника, таким образом, соответствует своя цветность светового потока. Остроумное развитие этот принцип получил у изобретателя Г. Л. Курдюмова, который управляет регуляторами посредством нитей, как в театре марионеток.
    В обычных театральных регуляторах света выбирают канал и изменяют яркость подвижным рычагом, связанным с бесконтактным индуктивным датчиком или переменным резистором управления, задающим уровень сигнала на входы БУМ. Кроме того, регуляторы снабжают программаторами, позволяющими предварительно установить порядок действия всех цепей регулирования в каждой последующей сцене. Но на их применение в режиме СМИ рассчитывать не стоит, так как они удобны лишь при статическом освещении сцены. В СМИ, кж увидим далее, удобнее использовать иной способ программирования с оперативной коммутацией светопроекторов на выходе каждого канала БУМ.
    Пульты СМИ по сложности и даже по внешнему виду напоминают иногда органные консоли (рис. 23). Если пульт совмещен с ВОУ, он может представлять собой обычные механические рычаги, стальные тросы, гибкие передачи и т. п., связывающие органы управления пульта с диафрагмами, светофильтрами, трафаретами в ВОУ. Подобный принцип использовал в светоинструменте "Клавилюкс" американский конструктор Т.Уилфред (рис.24) [23].
    Пока среди всех подобных СМИ, если не считать тех, что используют стандартные театральные светорегуляторы, не существует унификации пультов. Кж оригинальный и удобный в работе пульт следует отметить конструкцию харьковского зала светомузыки (проект Ю. А. Правдюка).


Рисунок 22

Рисунок 23

    Пример решения пульта СМИ с растровыми изображением приведен на рис. 25. Клавишами выбирают зону засветки экрана тем или иным цветом, а яркостью управляют посредством ножных педалей.
    Существуют бесконтактные пульты с фотодатчиками, управляемые светом. Их удобно применять в основном в растровых СМИ,- когда пульт также представляет собой растровое поле датчиков. Действие фотодатчиков можно настроить на открывание или закрывание фотоключей при попадании на них света. Перекрывая свет, падающий на пульт, рукой, шторками, фигурными трафаретами или кинопленкой, получают движение соответствующих светлых или темных образов заданной конфигурации на большом экране. Как увидим в следующей главе, этот способ можно использовать и в транспа-рантных СМИ.


Рисунок 24

    Известны интересные конструкции пульта с другими бесконтактными устройствами - емкостными датчиками, работающими по принципу известного ЭМИ "термен-вокс". Необходимо отметить и так называемые "сенсорные" устройства, позволяющие коммутировать цепи без механических усилий, простым прикосновением к соответствующей точке поверхности пульта.
    Попытку унифицировать пульты управления СМИ предприняли разработчики установки "Мираж" [18]. Для этого СМИ они разработали несколько разновидностей клавиатуры дискретного и непрерывного действия.
    К дискретным клавиатурам они отнесли такие, при касании к которым скачком меняется состояние ключевого элемента (контакты, герконы, "сенсоры" и т. д.). При 10 - 13 градациях формируемого управляющего сигнала можно получить плавное управление яркостью источников света.
    Аналоговые клавиатуры обеспечивают плавное изменение управляемого параметра на выходе пульта. К управляющим элементам такой клавиатуры надо отнести преобразователи "перемещение-напряжение" магнито-резисторы. Следует отметить, что любую непрерывную величину можно представить в виде дискретной с некоторым малым шагом сканирования.
    Специфическую группу составляют клавиатуры с управляющими элементами преобразователя "время-напряжение", т. е. выходной параметр зависит от того, как долго исполнитель касается органа управления. Все эти виды клавиатуры для СМИ "Мираж" взаимозаменяемы.
    Световую композицию воспроизводят на пульте по световой партитуре, которая является своего рода памятью операторских манипуляций. Заранее следует оговорить, что, в отличие от музыки, в световой партии унифицированной нотной записи существовать не может. В этом убеждает отсутствие единых обозначений даже для танца, где задача намного проще. Но для каждого конкретного вида СМИ своя условная запись возможна и целесообразна. Естественно, нотными или другими знаками можно записать лишь движения ручек на пульте, сама же основа композиции воплощена в трафаретах ВОУ. Для того, чтобы зафиксировать всю композицию в ее, целостности, необходимо обращение либо к кино- и видеосъемке, либо к специальным запоминающим устройствам ЗУ, которые можно совмещать со СМИ, если у них БУМ выполнен в электронном варианте.


Рисунок 25

    Итак, при работе с обычными оптико-механическими СМИ существует проблема запоминания сигналов на входе СМИ согласно требуемому порядку включения соответствующих БУМ и управления ими по определенной программе. Частично здесь можно заимствовать опыт работы с многопрограммными регуляторами света, предназначенными для телестудий и театра. Управляющие сигналы для них записывают в виде системы отверстий на перфокарты или перфоленты. Эти отверстия являются, по сути дела, двоичным кодом значений яркости, установленных в ходе репетиций. При воспроизведении преобразователь "код — напряжение" формирует сигнал, который вводят в мостовое устройство сравнения, где этот сигнал воздействует на электромагнитные муфты рычагов управления.
    В некоторых случаях достаточным оказывается использование и других простейших программных устройств. Рассмотрим, например, такую задачу: запомнить сигнал срабатывания коммутатора для подключения определенной комбинации нескольких ВОУ из имеющего их числа на выходе одного мощного БУМ. В качестве коммутационного устройства можно взять шаговый искатель, скоммутировав необходимым образом его контактами соответствующие комбинации ВОУ, как это требует исполнение светомузыкальной композиции. Сигналы управления шаговым искателем можно формировать с помощью фотоэлектронного устройства, которое реагирует на отраженный свет (зеркальная пленка, наклеенная на магнитную ленту) или прямой свет (смыв предварительно феррослой с участка магнитной ленты), причем все эти управляющие участки наносят на свободные дорожки той же магнитной ленты, на которой записан звук.
    Управляющий импульс может быть записан непосредственно и на самой магнитной ленте. Для этих целей могут быть использованы известные схемы переключающих устройств, синхронизирующие магнитофон и автоматический диапроектор.
    Более сложной является запись на магнитную ленту переменных сигналов управления, например изменения яркости ламп или скорости электродвигателей. Имеется несколько генераторов с некратными частотами. Амплитуда сигнала каждого из них меняется в зависимости от уровня сигнала с выхода соответствующего элемента пульта (некратность необходима для исключения совпадения гармоник одного генератора с основными частотами других). Несущие частоты записывают на одну дорожку во время предварительной подготовки световой программы. В режиме воспроизведения сигналы с ленты поступают на вход дешифратора, содержащего резонансные фильтры и детекторы. Каждый фильтр выделяет свой сигнал управления.
    Дня записи и воспроизведения звуковой программы и сигналов управления на одну магнитную ленту используют специальные многоканальные магнитофоны либо обычные стереофонические магнитофоны, предварительно переделав их так, чтобы можно было при необходимости отдельно на каждой дорожке стирать, записывать и воспроизводить нужные сигналы.
    По сравнению с рассмотренной аналоговой системой преимущество имеет цифровая система записи, получившая в настоящее время очень широкое распространение и позволяющая использовать бытовые магнитофоны. Преимущество состоит, как мы увидим дальше, в большей плотности записи информации, высокой помехозащищенности, точности. Сигналы управления, записанные на магнитную ленту, можно передавать одновременно на несколько светомузыкальных устройств, на большое расстояние, например, по трансляционной сети. Реально это возможно для несложных унифицированных СМИ бытового назначения.

динамическое освещение декоративное освещение прожекторы для баров светильники для кафе освещение светомузыка цветомузыка СДУ светодинамическая установка

8. Особенности звукового канала

    Светомузыкальные композиции можно исполнять как в сопровождении оркестра, так и под фонограмму, воспроизводимую электроакустическим устройством. Однако необходимость работы в темноте заставляет отдавать предпочтение фонограмме. Не стоит, конечно, говорить о необходимости высококачественного звуковоспроизведения. Действ Pie самых интересных светокомпозиций может быть сведено на нет из-за шипящей грамзаписи или устройства вопроизведения низкого класса.
    На рис. 8 звуковой канал выделен в самостоятельную цепь, содержащую свои аналоги элементов светового канала. Но если элементам светового канала (ВОУ, БУМ и ПС) были посвящены отдельные разделы, то для описания всего звукового канала достаточно одного небольшого раздела, так как требования, предъявляемые к этому каналу, в основе своей те же, что и к обычным звуковоспроизводящим устройствам. Поэтому основное внимание обращено на некоторые специфические требования к элементам звукового канала, обусловленные синтетическим характером светозвукового воздействия и совместной работой обоих каналов в единой конструкции.
    Прежде всего необходимо исключить влияние помех электронных БУМ светового канала на акустический тракт, которое проявляется в виде наводок по цепи питания или электромагнитных наводок (в основном высокочастотных). Кроме развязки звукового и светового каналов по цепи питания, использования защитных фильтров и экранирования входных цепей усилителя ЗУ, необходимо блоки этих каналов пространственно разнести один от другого. Источники звука необходимо располагать как можно ближе к ВОУ, иначе произойдет нежелательное разрушение эффекта единства светозвукового воздействия. Если экран ВОУ велик, то его необходимо делать (при фронтальной проекции) из акустически прозрачного материала, а громкоговорители помещать за ним (как принято в кинозалах, где экран выполнен из пленки с большим количеством мелких отверстий). При рир проекции громко говор иге ли приходится устанавливать у основания или по контуру экрана. Поскольку повышение высоты звука психологически ассоциируется с подъемом, высокочастотные громкоговорители обычно помещают над низкочастотными, над экраном.
    В больших залах предусматривают звуковые отражатели для улучшения акустических характеристик помещения. В специальных залах сферической формы, где обязательно нужно бороться с нежелательной фокусировкой звука, отражатели помещают не в зале, а за экраном (в случае, если экран акустически прозрачный, источники звука тоже помещают за экраном).
    Звуковой пульт при работе со СМИ должен быть независимым в конструктивном решении и рассчитанным на обслуживание отдельным исполнителем. Специфика работы звукооператора состоит в том, что помимо его традиционных обязанностей (управление громкостью и качеством звучания, звуковыми эффектами и т. п.) ему нужно совместно со светооператором формировать единую художественную светозвуковую композицию, особенно при использовании специальных электроакустических установок пространственного звука, когда звукооператор получает возможность управлять движением звука в объеме зала или плоскости экрана и совмещать в пространстве одновременное движение светового и звукового образов.
    Прием пространственного разделения и движения разных звуковых голосов, мелодий, инструментов редко используется сам по себе, обычно он сопутствует динамике света. При этом в партитуре должна быть зафиксирована своими условными знаками партия движения звука. Разумеется, звук не обязательно должен постоянно "бегать" за светом, способствуя созданию иллюзии перемещения некоего звучащего тела. Наряду с подобным унисонным синтезом траекторий звука и света можно преднамеренно разделять эти траектории и полифонически противопоставлять их друг с другом. Можно бесконечно разнообразить сочетание пространственной музыки и световой партии. Представьте - скрипач стоит за просветным экраном и играет перед микрофоном. Световые проекторы вырисовывают на экране его многоцветную тень, а усиленные звуки скрипки описывают по залу плавные кривые с помощью установки пространственной музыки. Оптимальные условия для совместного воспроизведения "пространственной" музыки и световой партии, по мнению авторов, могут быть обеспечены в специальных залах замкнутой формы, где вся описанная выше аппаратура будет использоваться во всем ее многообразии.
    Ознакомившись со всем этим комплексом световой и звуковой техники, можно убедиться, что процесс управления ею во время свет оконце рта не так прост и требует слаженных действий целой группы светомузыкантов-операторов, управляемых режиссером-дирижером, действия которого несхожи с. теми, что мы видим у традицион-ного дирижера. Ему надо управлять не обычным, а световым оркестром, причем в темноте. Удобнее всего это сделать посредством речевых команд, подаваемых из застекленного звукоизолированного помещения в микрофон. Сигналы по проводам поступают в головные телефоны операторов. Можно записать речевые команды на многоканальный магнитофон в процессе репетиций. А в идеале, как уже отмечалось выше, на ленту следует записывать вместе с музыкой закодированные электрические сигналы управления всеми проекторами и траекторией движения звука.

динамическое освещение декоративное освещение прожекторы для баров светильники для кафе освещение светомузыка цветомузыка СДУ светодинамическая установка

9. Исторический обзор техники светомузыкального синтезирования

    Первая попытка создания СМИ связана с именем французского монаха Л.-Б. Кастеля (1688 — 1757). Его идея "музыки цвета" была весьма наивной. С нажатием клавиши клавесина перед глазами выскакивали окрашенные цветные ленты. Каждая клавиша была связана с определенным цветом по аналогии спектр-гамма. Он предлагал также использовать свечи со шторками, просвечивающие драгоценные камни разного цвета. Российская Академия Наук в 1742 г. посвятила критике идей Кастеля специальное заседание. В конце XVIII в. подобный инструмент реализовал К. Эккартсгау-зен в Германии: "Я заказал себе цилиндрические стаканчики из стекла, равной величины, в полдюйма в поперечнике. Налил их разноцветными жидкостями по теории цветов, расположил сии стаканчики как струны в клавикордах, разделяя переливы цветов, как делятся тоны. Позади сих стаканчиков сделал я медные клапанцы, коими они закрывались. Сии клапанцы связал я проволокою так, что при ударе по клавишам клапанцы поднимались и цветы открывались. Сзади осветил я сии клавикорды высокими свечами. Красоту являющихся цветов описать нельзя, она превосходит самые драгоценные каменья. . ." [Эккартсгаузен К. Ключ к таинствам натуры. — СПб, 1804, с. 277.] Подобный инструмент был повторен в 1844 г. англичанином Д. Джеймсо-ном, а затем Д. И. Хмельницким — в России. Когда появились масляные лампы, их немедленно предложил использовать для исполнения цветовых мелодий Э. Дарвин: источником света" . . . является лампа Ар ганда, свет этот проходит через цветные стекла и падает на определенное место стены; перед стеклами помещаются подвижные решетки, соединенные с клавишами клавикорда, и производят одновременно слышимую и видимую музыку в унисон друг с другом" [Дарвин Э. Храм природы: Пер. с англ. - М.: АН СССР, 1960, с. 156.].
    Первые же электрические источники света сразу привлекли внимание сторонников "музыки цвета". Пока не было ламп накаливания, предлагали использовать разрядники из разных металлов, дающие искры разного цвета. Было построено два "цветовых органа" с применением электрической дуги - американцем Б. Бишопом и англичанином А. Ремингтоном (рис. 26).
    Мы не стали бы приводить здесь столь подробное описание всех этих забавных световых инструментов, в лучшем случае напоминающих огромные семафоры и убеждающие на практике лишь в бессмысленности аналогии спектр-гамма, если бы и сейчас не появлялись запоздалые проекты СМИ, которые отличаются от "цветового клавесина" Кастеля лишь тем, что в них использованы современные лампы накаливания, цветные кинескопы и лазеры.


Рисунок 26

Рисунок 27

    Конструктор "цветового рояля" Ф. И. Юрьев считает, что окрашивая экран в любой из 12 цветов цветоряда, можно создавать, следуя аналогии цветоряд — звукоряд, немую "музыку цвета". Кроме такого "цветового рояля", Ф. И. Юрьев с настойчивостью Кастеля вновь предлагает проекты "цветовой виолончели", "цветового ксилофона" и т. д. [13]. Но новое искусство требовало новых инструментов, не подражающих звуковым, а своих, особых, с организацией света в сложные формы разной фактуры. И такие СМИ появились. Еще во времена Кастеля художник И.-Л. Гофман писал: "Если бы краскам цветового клавесина сообщить и рисунок, то изобретатель заслужил бы золотой памятник". Рассмотрим далее работы тех, кто мог бы претендовать на этот памятник.
    Вскоре после Октябрьской революции художник В. Д. Баранов-Россине проводит свои концерты "оптофонной музыки" в Большом театре и театре Мейерхольда. Для этого им был создан диапроекционный СМИ с дисковыми трафаретами (рис. 27).
    В 1920 г. Г. И. Гидони (Петроград) берет патент на "световые декорации", полученные с помощью теневых трафаретов Он создает световые партии к "Интернационалу", к Девятой симфонии Бетховена, к стихам А. С. Пушкина в 1928 г проводит показательные светоконцерты. Самый грандиозный его проект — световой памятник' Революции, к сожалению, не реализованный из-за технических трудностей (рис. 28). Огромный полупрозрачный шар-глобус является залом на несколько тысяч человек. Смотреть светокомпозиции зрители могут и снаружи, находясь на постаменте, представляющем собой конструкцию из огромных серпа, молота и шестерни [4] Кстати подобные светомузыкальные сооружения впервые появились лишь в последние годы -это павильон на ЭКСПО-67 в г. Монреале (Канада), ЭКСПО-70 в г. Осака (Япония).
    Из советских экспериментаторов довоенных лет можно отметить С. О. Майзеля, А. М. Дымшица М. В. Матюшина И И Кондрацкого, работающих в области конструирования СМИ. Среди работ зарубежных современников Гидони заслуживает внимания инструмент венгра А. Ласло. Основой его СМИ служат четыре диапроектора со сменными статическими и динамическими трафаретами, включая и жидкостные. В середине 20-х годов Ласло проводил светоконцерты в разных городах Европы. Позже с подобными СМИ начал работать в специальном зале англичанин Ф. Бентам, исполнивший в 1937 г. впервые в Западной Европе Прометеи
    Скрябина со светом. _
    Но наибольший интерес вызывают СМИ американца Т. Уилфреда, объединенные общим названием "Клавилюкс" Его первый СМИ был построен в 1919 г. В предвоенные годы Уилфред выступает в США ив Европе в основном с концертами беззвучной "музыки света" (рис. 29). В 1926 г. совместно с дирижером Л. Стоковским он исполняет со светом "Шехерезаду" Н. А. Римского-Корсакова. Пульты его инструментов обычно совмещены с ВОУ. В рирпроекционном СМИ четыре проектора, оснащенных сменными перемещаемыми лампами с фигурными нитями, набором поворачиваемых линз на пути луча света и разного рода трафаретов: плоских и объемных, вращаемых, замкнутых в кольцо и т.д. "Клавилюксы Т. Уилфреда по сложности картин и гибкости управления являются образцами СМИ и по сей день. Незавершенным остался проект Института света со "световым колоколом" в угловой башне (рис. 30). С 1967 г. эксперименты Т. Уилфреда продолжают его ученики В. Сидениус, Э. Рейбак, а с 1971 г. - Нью-йоркский "Ансамбль светомузыки" (рис.31).


Рисунок 28

Рисунок 29

    В послевоенные годы следует отметить активную деятельность Музея А. Н. Скрябина, где при содействии академика С И. Вавилова был создан светоинструмент со статическими трафаретами и несколько макетов светомузыкальных залов. В сотрудничестве с музеем работают А. И. Кириленко и В. П. Борисенко. В 50-е годы В. П. Борисенко проводил светоконцерты на небольшом СМИ с реостатным БУМ и ВОУ на основе обычного шарового плафона.
    В 1962 г. в Казанском авиационном институте в студенческом конструкторском бюро (СКВ) Прометеи была изготовлена стационарная установка "Прометей-1" (конструкторы Ю. М. Коваленко, Г. В. Пронин, О. В. Шорников). За полупрозрачным экраном размерами 30X6 м было равномерно размещено более 1000 ламп накаливания по 15 Вт, окрашенных в семь цветов. Каждым цветовым каналом управляли с пульта посредством автотрансформаторов ЛАТР мощностью 3 кВт. На этом СМИ было проведено первое в СССР концертное исполнение "Прометея" Скрябина со световым сопровождением по авторской партитуре [7].


Рисунок 30

   
Рисунок 31

    В 1963 г. в СКВ "Прометей" КАИ была разработана установка "Прометей-2" растрового типа с пространственной динамикой света. За экраном размерами 24X5 м находились 120 кассет с пятью лампами накаливания разного цвета в каждой. С помощью пяти пультов (рис. 25) операторы формировали пятна различных очертаний и перемешали их по экрану согласно партитуре. БУМ выполнен на автотрансформаторах. В 1963 -1964 гг. на этой установке были исполнены световые композиции на музыку А. Н. Скрябина, Н. А. Римского-Корсакова, М. П. Мусоргского, И. Ф. Стравинского, Ф. 3. Яруллина. Основной недостаток этого СМИ - низкая разрешающая способность растра.
    В 1966 г. СКВ "Прометей" демонстрирует на ВДНХ СССР СМИ меньших габаритов -"Кристалл", ВОУ которого выполнено в виде октаэдра из прозрачного оргстекла (конструкторы Б. М. Галеев, Р. Ф. Даминов) (рис. 32). Внутри его размещен куб из матового стекла, внутри которого, в свою очередь, смонтирован октаэдр с источниками света пяти цветов. С помощью клавиатуры исполнитель мог независимо менять цвет каждой грани "Кристалла". Яркостью можно управлять автоматически либо ножными педалями. Первый вариант БУМ выполнен на тиратронах, второй - на тиристорах. Мощность каждого цветового канала 600 Вт.
    Сейчас СКВ "Прометей" экспериментирует в зале студии светомузыки Казанского молодежного центра, где смонтирован СМИ "Прометей-3". Фильмы и светомузыкальные установки "прометеевцев" экспонировались в ГДР, Болгарии, Чехословакии, Сирии, Италии, Англии, Канаде, Греции, США, на Кубе. В 1984 г. материалы СКВ "Прометей" были представлены на выставке "Электричество и электроника в искусстве XX века" (Музей современного искусства, Париж). Они отмечены сорока пятью медалями ВДНХ СССР.


Рисунок 32

    В 1963-1966 гг. в Ленинградском институте авиационного приборостроения была разработана серия СМИ фронтальной диапроекции "Люкс-1", "Люкс-2", "Люкс-3" (конструкторы И. В. Модягин, Ю. В. Кошевой). "Люкс-3" демонстрировался на ВДНХ СССР. Его ВОУ выполнено на ксеноновых прожекторах ПКП-1-250 мощностью 1 кВт, внутри которых (на пути луча) размещены диафрагмы и трафареты из фольги, поворачиваемые с помощью соленоидного привода (катушка от громкоговорителя). Пульт выполнен в виде обычной фортепианной клавиатуры. Предусмотрена запись световой партии на магнитную ленту посредством частотного разделения каналов с амплитудной модуляцией несущих.
    В 1965 г. в Московском авиационном институте был сконструирован СМИ с оригинальным решением пульта. Музыкант управлял яркостью света в каждом канале, как в "терменвоксе", приближением руки к управляющим элементам - металлическим дискам.
    В СМИ "Зала цветомузыки" при харьковском ЦПКиО (зал открыт в 1969 г.) использована транспарантная проекция с барабанными трафаретами в сочетании со статическими. На этом СМИ его конструктором Ю. А. Правдюком исполнялись "Прометей" А. Н. Скрябина, рок-опера А. Л. Рыбникова "Юнона и Авось", световые интерпретации произведений Р. Вагнера, К. Дебюсси, Д. Д. Шостаковича и многих других композиторов [37]. Всего было создано около 100 светокомпозиций. Сейчас харьковский зал признан лидером в области светомузыкальной концертной деятельности. С 1970 г. модификации харьковского инструмента с несколькими подготовленными Ю. А. Правдюком комплектами формообразователей использовались в Московской студии электронной музыки, затем в детской студии светомузыки харьковского Дома пионеров, в студии светомузыки г. Чкаловска, Алма-Аты, в подмосковном санатории "Ерино", в ансамблях "Смеричка" и "Песняры".
    СМИ полтавской "Лаборатории цветодинамических устройств" (автор проекта С. М. Зорин) демонстрировался на ВДНХ в 1970 г. В нем использована транспарантная рирпроекция. Подвижные трафареты - дисковые. Источники света - точечные лампы накаливания; светофильтры - пленочные [б]. Много лет функционирует мощный вариант такого СМИ в мотеле "Полтава". Другая модификация СМИ серии "Пол-тава-1" долгое время эксплуатировалась в зале зстетотерапии подмосковного санатория "Ерино", а СМИ "Полтава-2" — в лаборатории интенсивного обучения МГУ, в комбинате здоровья в г. Красногорске. Последователи в Полтаве усовершенствовали эти СМИ путем усложнения пульта управления и введением системы памяти (СМИ серии "МИСС" автор В. Скакун). Группа инженеров из Одессы использовала световые проекторы установки "Полтава-1" в целом ряде вариантов своего СМИ "Мираж".
    Необычно решена крупномасштабная установка "Андромеда" с вертикальным экраном прямоугольной формы, работавшая в Измайловском парке Москвы с 1971 г. (авторы А. П. Михненко и др.). Она содержит большой набор плоских и объемных трафаретов из металла и стекла, используемых для сопровождения различных музыкальных произведений. Экран размером 18X3 м сделан из молочного органического стекла. Исполнитель находится внутри самой башни и контролирует свои действия, наблюдая за экраном небольшой, идентично действующей модели установки. Использование постоянного комплекта трафаретов ограничивает возможности установки, не позволяя получать завершенные в композиционном отношении световые сопровождения. Но зато это позволяет легко переводить ее работу в режим АСМУ. Автоматическое сопровождение осуществляется с тем же результатом, правда уже применительно только к легкой музыке.


Рисунок 33

    Используют элементы светомузыки и в отдельных театральных постановках, например в Московском театре на Таганке, в Тбилисском оперном театре и т. д. Некоторые театры проводят и специальные концерты светомузыки. В 1972 г. в ленинградском киноконцертном зале "Октябрьский" был исполнен "Прометей" Скрябина с использованием диапроекции (мощные проекторы "Дрезден") и кинопроекции из нескольких аппаратов (авторы проекта Е. Б. Галкин, Б. В. Синячевский). После премьеры "Прометея" со светом началась эксплуатация светомузыкальной установки в московском киноконцертном зале "Россия" (1975 г., авторы проекта К. Л. Леонтьев, Г. И. Ашке-нази).
    Установка содержит пульт (см. рис. 23) и тиристорные БУМ; ВОУ в основном рассчитано на общую бесформенную засветку большого экрана, которая дополнена динамическим цветным освещением потолка. Для создания фигурных образов использована кинопроекция. В пульте предусмотрено переключение на режим АСМУ для сопровождения эстрадных спектаклей. Световая партия создавалась под руководством дирижера К. К. Иванова, который участвовал в исполнении "Прометея" в 1962 г. в концертном зале им. П. И. Чайковского; тогда была использована менее мощная установка конструкции К. Л. Леонтьева с поляризационными светофильтрами.


Рисунок 34

   
Рисунок 35

    Проектирование СМИ Московской экспериментальной студии электронной музыки (ЭСЭМ) при фирме "Мелодия" было начато в 1965 г. изобретателем фотоэлектронного музыкального синтезатора звука "АНС" Е. А. Мурзиным, закончено коллективом во главе с М. С. Малковым. Использовалась в основном диапроекция (фронтальная). В последние годы в ЭСЭМ экспериментировали с лазерным СМИ (лазеры ЛГ-Зб - красный, ЛГ-106 — зеленый, ЛГ-31 — синий). Действие их сочеталось с электронной музыкой и пантомимой. Красочные лазерные композиции получал и С. М. Зорин, использо-аавший их в МГУ как средство активизации в курсе интенсивного обучения в одной из лабораторий (см. рис. 33, а, б).
    Лазерные представления проводят в последнее время в московском Мемориальном музее космонавтики, в московском планетарии [45], в драматическом театре г. Дзержинска [42]; з тульском цирке, в ленинградском дворце спорта "Юбилейный". Лазеры используют в сочетании с обычной аппаратурой и в концертах созданной в 1983 г. студии светомузыки г. Ужгорода (рис. 34, руководитель Д. А. Фридман).


Рисунок 36

    Лазеры все чаще применяют и зарубежные эспериментаторы: при постановке оперы Моцарта "Волшебная флейта" (Мюнхен, 1970 г.), в концертах с музыкой Скрябина американской пианистки X. Сомер, в демонстрационных программах фирмы "Сименс" на радиотехнической выставке (ФРГ, 1971 г.), при исполнении "Прометея" в США (Нью-Хейвен, 1972 г.), в композиции "Политоп" французского экспериментатора Я. Ксенакиса и т. д. С 1970 года многие планетарии США, Японии, Англии оснащают светомузыкальными установками " Лазериум".
    При будапештском планетарии действует клуб "Цветомузыка", а в чехословацком городе Брно успешно функционирует более десяти лет "Лазерный театр" (руководитель Я. Доубек).
    Из зарубежных обычных оптико-механических СМИ последнего времени следует отметить "Музископ" Н. Шеффера (см. рис. 22), а также светоинструменты американцев Т. Джонса, Т. Шусмита.
    Близка к технике СМИ аппаратура, используемая при съемке светомузыкальных фильмов [2, 21, 22, 40]. Но технология кино при этом претерпевает значительные изменения. Так, фильмы СКВ "Прометей" сняты на черно-белую пленку, а конечный позитив получен уже многоцветным (рис. 35: а - "Прометей", б - "Вечное движение", в - "Маленький триптих", г - "Космическая соната"). Перспективно использование в качестве ВОУ малогабаритных СМИ и цветных кинескопов [20]. Смыкается со СМИ и аппаратура светомузыкальных фонтанов и необычных театрализованных представлений "Звук и Свет".
    Информация об истории конструирования и использования СМИ во всем мире обширно представлена на стендовой экспозиции Музея светомузыки, который организован в 1979 г. и находится при студии светомузыки Казанского молодежного центра (рис. 36).

динамическое освещение декоративное освещение прожекторы для баров светильники для кафе освещение светомузыка цветомузыка СДУ светодинамическая установка

СОВРЕМЕННЫЕ СВЕТОМУЗЫКАЛЬНЫЕ ИНСТРУМЕНТЫ
    10. СМИ транспарантной проекции

    Начнем наш обзор со СМИ, который за 20 лет эксплуатации показал очень хорошие художественные и исполнительские возможности, надежность и долговечность и заслужил право называться "классическим" в своей области. Это СМИ "Харьков", разработанный и используемый известным советским .светохудожником Ю. А. Правдюком в концертах, проводимых в "Зале цветомузыки" харьковского ЦПКиО им. Горького и в студии политехнического института. СМИ сочетает простоту, изящество конструкции и широкие изобразительные возможности.
    В ВОУ данного СМИ используется транспарантная проекция с цилиндрическими роторами (см. рис. 15,а, б).


Рисунок 37

    Принцип действия СМИ "Харьков" рассмотрим по схеме на рис. 37. Его БУМ выполнен на шести автотрансформаторах типа JIATP-1M (на схеме показаны только два канала управления). Мощность одного канала - 2 кВт. К каждому автотрансформатору выключателями SA.J — SA4, SA5 - SA8 и посредством наборной коммутационной панели НКП можно подключить любую проекционную ячейку ВОУ или группу ячеек (с лампами ЕЫ - ELS) во всевозможных комбинациях. Панель представляет собой коммутационное поле, вертикальные линии которого штекерами можно замыкать с горизонтальными.
    Источники света в каналах управления - лампы накаливания на 127 В, яркость которых регулируют изменением напряжения от 0 до 170 В, работают в режиме перекала. При этом значительно увеличивается световой поток и синеет спектр излучения. Поскольку напряжение на лампах изменяют плавно, средний срок службы их снижается незначительно. Предусмотрены еще четыре ячейки ламп EL6 — EL9, коммутируемые выключателями SA9 — SA12 неработающие в режиме мгновенных вспышек.
    Рукоятки СМИ сгруппированы так, что исполнитель может манипулировать одной рукой одновременно тремя рукоятками, при этом на экран можно вывести от одной до шести неподвижных или управляемых форм как отдельных, так групповых. Практика светомузыкального исполнительства показывает, что такого числа проецируемых одновременно изображений вполне достаточно. Это положение подтверждают психологи: человек одновременно может распознать не более шести-семи самостоятельных объектов в поле зрения.


Рисунок 38

    Пульт управления СМИ "Харьков" показан на рис. 38. Его конструкция содержит следующие элементы: корпус 13; коммутационную панель 4; клавишные панели 10 с четырьмя выключателями 9, рукоятки управления 11, автотрансформаторы 2 с механической тягой 3 и противовесом 1; пюпитр 5, выключатели 6-8 дистанционного управления светом в зале, магнитофоном, двигателями проекционных ячеек соответственно; педали включения мгновенных вспышек 12.
    Пульт находится перед плоским экраном размерами 4X3 м. Над пультом, на высоте 3,5 м помещается кассета с десятками светопроекционных ячеек квадратного сечения (рис. 39). Расстояние от проекторов до экрана 5-7 м.
    Рассмотрим устройство проекционной ячейки СМИ "Харьков" (рис. 40). Корпус 1 изготовлен из листовой стали толщиной 0,5 ... 0,8 мм. На торце патрона 3 с лампой 10 укреплен постоянный магнит 2, позволяющий фиксировать лампу в любом положении в любом месте ячейки за вращающимся барабаном 8. Возможность такого перемещения лампы очень важна, так как положение нити накала лампы по отношению к прорезям на барабане определяет характер рисунка световой проекции на экране. Барабан 8 вращает электродвигатель 4 постоянного тока через промежуточный привод, состоящий из двух многоступенчатых шкивов 5 с пассиком, и редуктора 6 от электродвигателя ДСД-2; у редуктора предварительно обрезают заднюю часть корпуса и открывают входную ось, на которую и устанавливают шкив. На выходной оси редуктора, находящейся внутри корпуса, имеется петля для крепления барабана, а на самих барабанах сверху и снизу предусмотрены крючки. Такая подвеска барабана расширяет возможности динамической светопроекции На выходе проектора установлен светофильтр 7 и статический трафарет Р.


Рисунок 39

   
Рисунок 40

    На рис. 41 показан принцип формообразования в светопроекционной ячейке. Благодаря тому, что противоположные стенки барабана движутся во встречных направлениях, лучи света от лампы проходят через щель, образованную двумя противоположными вырезами. Щель непрерывно изменяет конфигурацию. Движение форм" на экране получается ритмичным, танцевальным. Наличие такой двойной модулящш луча света позволяет получать световые проекции, заметно отличающиеся от рисунка вырезов на самом барабане.


Рисунок 41

    Неподвижный трафарет (статор) играет также двойную роль; он либо ограничивает область развития данной формы на экране, замыкая ее в какой-то определенный контур, либо еще более трансформирует исходную форму, полученную от ротора (в том случае, если он сам содержит мелкие прорези). Вблизи статора крепится светофильтр. Формообразующие роторы и статоры изготовлены в основном из плотного ватмана. Прорези либо вырезают скальпелем, либо выжигают, причем прорези могут быть и с прямолинейными, и с криволинейными контурами. Выжигание — прием более технологичный, так как позволяет одинаково справиться и с крупными вырезами, и с мелкими ажурными узорами. Готовые барабаны с вклеенными с двух сторон крышками желательно покрасить в черный цвет для увеличения контрастности изображения на экране и пропитать специальным составом, предотвращающим возгорание. Кроме цилиндрических можно применять формообразователи конической, призматической, эллиптической, кардиоидной и других форм (рис. 42, а, б). Полый барабан можно заполнять полосками цветной прозрачной пленки (стержнями, волокнами и др.), что позволяет менять фактуру светового образа.
    "Палитру" светохудожника существенно обогащают объемные формообразователи, выполненные в виде пространственных: структур, вписанных в контуры барабана (рис 42, в). Это могут быть также подвешенные тонкие стержни, колеблющиеся при вращении, и тогда в зависимости от их диаметра, числа и частоты вращения формообразователя получается мерцающее изображение, контуры которого зависят от рисунка прорезей в неподвижном трафарете. Такое мерцание нельзя заменить электрической модуляцией самого источника света, так как подобный формообразователь, кроме эффекта мерцания, существенно изменяет структуру самого светодинамического образа.
    Таким образом, главным достоинством описываемого СМИ можно считать очень широкие возможности в Л оздании разнообразных световых композиций. Фантазия, умение и опыт позволяют "рисовать" с помощью таких СМИ любые танцы летающих, клубящихся, ведущих между собой борьбу образов (рис. 43, а, б). Картина эта во многом зависит от изобретательности светохудожника, позволяющей сделать формо-образователем почти все, что имеется у него под рукой.


Рисунок 42

   
Рисунок 43

    Для этого, естественно, надо хорошо представлять конечную цель, видеть внутренним взором всю структуру воображаемой световой картины в движении. В этом случае любой предмет, освещаемый цветным светом и перемещаемый в пространстве, может способствовать воплощению на экране убедительного художественного образа.
    Естественно, описанный здесь пульт управления так же, как и проекционные ячейки, любители могут модернизировать, автотрансформаторы заменить тиристорами, вообще применить самую современную элементную базу, вместо ватмана использовать фольгу и т. п. Но это будут лишь технические усовершенствования и новшества. Неизменным останется сам принцип формирования светодинамической композиции, предложенный Ю. А. Правдюком и заслуживающий самой высокой оценки, благодарности и признательности у всех, кто причастен к новому искусству.
    Большие возможности открылись и при использовании в ВОУ теневой проекции по принципу, представленному на рис. 15, ж и з с дисковыми роторами. С 1963 г. экспериментировал с ними С. М. Зорин, положивший их в основу серии СМИ "Полтава" разной мощности и размеров. В общих чертах концепция изобретателя "Полтавы" близка к позициям Ю. А. Правдюка, с которым С. М. Зорин сотрудничает уже около 20 лет. Все его СМИ сочетают простоту и широкий диапазон возможностей.
    Рассмотрим подробно малогабаритный СМИ "Полтава", изготовление которого вполне доступно даже начинающему радиолюбителю. Инструмент состоит из корпуса с набором проекционных ячеек и выносного дистанционного пульта управления. Конструкция проекционной ячейки с узлами цвете- и формообразования представлена на рис. 44. На основании 6 закреплена втулка 15, на которую надет дисковый ламподержа-тель 14 с четырьмя маломощными лампами 7. Во втулке вращается ось 13, на одном конце которой пружинной шайбой 9 фиксирован формообразующий дисковый ротор 8, а на другом - диск 18 фрикционного вариатора. Между диском 18 и корпусом 6 вложена пружина 16 между двумя фторопластовыми шайбами 17. Трехступенчатый шкив с диском 2 вариатора приводится во вращение от внешнего электродвигателя через резиновый пассик 4. Вариатор состоит из ведущего диска 2, обрезиненного ролика 3, и ведомого диска 18. Ролик 3 может перемещаться вдоль оси 1, изменяя передаточное число вариатора. Трехступенчатый шкив вращается на опоре 5, ввинченной в основание 6. Такое совмещение плавного и ступенчатого изменения частоты вращения вала 13, а также управление частотой вращения ротора электродвигателя допускает вариацию чистоты вращения формообразователя в широких пределах (более чем в 100 раз). В ячейке применен реверсивный двигатель ДСДР-2 (220 В, 50 Гц). Частоту вращения его ротора регулируют путем изменения частоты питающего тока от 20 до 200 Гц, вырабатываемого генератором.


Рисунок 44

   
Рисунок 45

    На диске ламподержателя устанавливают четыре лампы. Их можно устанавливать на разном расстоянии от центра диска (определяется экспериментально). Когда горят две диаметрально противоположные лампы, то при вращении формообразователя на экране видны движущиеся навстречу друг другу световые образы. По форме они существенно отличаются от прорезей на формообразователе, так как нить лампы имеет определенную протяженность и конфигурацию. Неподвижные формообразователи 12, так же, как и светофильтры 11, находятся в специальной кассете 10, располагаемой вблизи вращающегося формообразователя.
    Лампоцержатель винтом фиксируют на втулке 75 в любом положении. Расстояние от ламп до формообразователя 8 определяет как размер форм на экране, так и их резкость. Если предусмотреть управление осевым перемещением ламподержателя, можно реализовать эффект "наплыва" и "отъезда", т.е. изменение размеров форм (подобно действию трансфокатора при киносъемке). Можно привести во вращательное движение сам ламподержатель, установив на втулке 16 кольцевые токосъемники, а на ламподержателе 14 — пружинящие щетки. Принцип формообразования в рассматриваемом СМИ показан на рис. 45 а.
    Пульт управления проекционными ячейками в портативном варианте СМИ "Полтава-1" чрезвычайно прост (рис. 46). Он состоит из переменных резисторов ПП-3 сопротивлением 47 Ом (их число равно числу каналов управления яркостью) и сетевого трансформатора, понижающего напряжение сети с 220 В до 8 В (хотя и применены лампы на напряжение 6,3 В). Переменными резисторами вручную регулируют напряжение на лампах, для чего на оси каждого резистора закреплен диск диаметром 100 мм с накаткой на цилиндрической поверхности для удобства поворачивания движка. Диски располагают в ряд на расстоянии 40 мм один от другого (расстояние это зависит от размеров резисторов). Выше ручек управления размещают кнопки, позволяющие реализовать вспышки форм на экране, если это потребуется по ходу развития композиции. Эти кнопки при нажатии замыкают переменные резисторы. На пульте установлены также тумблеры электроприводов. Тумблеры имеют среднее положение и позволяют не только включать и выключать электродвигатели, но и реверсировать их.
    Еще один перспективный вариант СМИ транспарантной проекции "Полтава-2" основан на принципе применения двойного барабана (см. рис. 15, д). Его конструктор С. М. Зорин обратил внимание на то, что в СМИ "Харьков", например, световой поток, направленный на экран, ограничен довольно малым телесным углом (угол 8, рис. 40). Формулы (1), (2) показывают, что КПД такого проектора невелик, а большое расстояние от проектора до экрана еще более снижает КПД (вспомним, что освещенность экрана обратно пропорциональна квадрату расстояния от источника света). Конструктор задался вопросом: как, не теряя достоинства барабанного формообразо-вателя, добиться существенного увеличения яркости экрана? Увеличивать мощность ламп не стоит вследствие перегрева проектора, увеличения его габаритов и главное -размывания контура проецируемого изображения из-за большой площади светящего тела этих ламп. В результате поисков и была найдена конструкция ВОУ вида двойной барабан.
    Ее преимущества в том, что она позволяет получить большой угол расхождения лучей источника света (сравните, например, угол о? на рис. 47 и угол е на рис. 40). Это дает возможность значительно уменьшить расстояние от проекторов до экрана (в СМИ "Харьков" расстояние можно было бы уменьшить в 4-5 раз), благодаря чему яркость экрана, естественно, увеличивается. Резерв яркости экрана позволяет использовать более плотные светофильтры (получать более насыщенный цвет), обеспечивать совмещение с другими видами проекций на тот же экран. Принцип формообразования проекционной ячейки с двойным барабаном иллюстрирует рис. 45, б.


Рисунок 46

   
Рисунок 47

    В результате многолетнего экспериментирования удалось найти удобную в обращении и надежную конструкцию проекционной ячейки с двойным барабаном (рис, 47). В цилиндрическом корпусе 1 ее светопрсекционным окном (справа по рисунку) размещены два формообразующих барабана 7 и 9 с минимально возможным зазором между цилиндрами. Такое положение барабанов фиксировано доньями 10 и 11, в которые эти барабаны установлены. Дно внешнего барабана приводит во вращение электродвигатель 16 (с редуктором) посредством обрезиненного ролика 7. Электродвигатель шаг-нирно закреплен в держателе 14, и пружиной 75 ролик 7 7 постоянно прижат снизу к дну 11 внешнего барабана. От него к дну внутреннего барабана вращение передается четырьмя обрезиненными роликами 2 (на рис. показаны два из них), укрепленными на качающихся осях 12.
    Оба барабана вращаются в противоположные стороны вокруг общего вала 13. Для надежного контакта между доньями они сжаты пружиной 3. Это обеспечивает равномерное и плавное вращение барабанов. Барабаны можно легко извлечь из доньев, перевернуть на 180°.
    Конструкция ячейки "двойной барабан" позволяет управлять масштабом изображения перемещением лампы 8 относительно стенки внутреннего барабана 9. Возможно также вертикальное перемещение держателя лампы 5, что используется, как при юстировке всех светопроекционных ячеек и при сведении изображения на одном экране, так и для композиционного совмещения световых образов. Манипулировать источником света при подготовительной работе ВОУ можно вручную, а во время концертного исполнения лучше это делать дистанционно. Втулка 6 для закрепления источника света перемещается относительно верхней крышки 4 проекционной ячейки.
    Конструктивную высоту барабанов определяют исходя из выбранного размера экрана и расстояния до него, так как нужно обеспечить заполнение экрана рисунком при любом положении источника света.
    Каждый из барабанов можно выполнить двуслойным и управлять сдвигом слоев. Это нетрудно сделать, по крайней мере, для внутреннего барабана, расположив электропривод с подвижным кольцевым токосъемником в центре, над прижимной пружиной 3. Такая конструкция позволяет светохудожнику изменять конфигурацию световых образов, а также управлять их исчезновением или появлением при полной яркости источников света (если сделать промежутки между прорезями, равными по размерам самим прорезям).
    Все перечисленные приемы управления формой могут показаться излишне усложненными или трудно выполнимыми. Но зато им сопутствует увеличение числа степеней свободы управления формой на экране, выявленное светохудожником на практике. В некоторых конструкциях изобретатель ввел дистанционное управление сменой цвета. Сделать это нетрудно, поскольку корпус ячейки цилиндрический, а наибольший необходимый на практике угол раскрытия по горизонтали оказался 95°. Следовательно, на цилиндрический корпус проекционной ячейки можно надеть еще один цилиндр, составленный из четырех дуговых секций, изготовленных из цветной пленки. Поворачивая этот цилинрр на 45°, можно окрашивать свет в любой из четырех цветов. Все это позволяет реализовать динамику светового образа по многим параметрам, что недоступно другим известным СМИ.


Рисунок 48

    Конструктор испытал также независимый привод для наружного и внутреннего барабанов. Это позволяет вращать барабаны не только навстречу, но и в одну сторону, причем скорость вращения каждого из них можно варьировать в самых широких пре делах. При этом возникает своеобразный эффект "набегания" световых форм.
    Внешний вид проекционной ячейки показан на рис. 48, а и б (наверху виден механизм изменения масштаба). Формообразователи изготовлены из латунной фольги, на которую фотоспособом был нанесен рисунок, а затем вытравлен. После травления прямоугольная заготовка свернута в цилиндр и края спаяны. Дня увеличения жесткости по окружности цилиндра сверху и снизу припаяна стальная проволока диаметром 1,5-2 мм. Барабаны можно изготавливать также из цветной пленки, можно использовать стеклянные цилиндры. Один из вариантов СМИ "Полтава-2" для комбината здоровья в Красногорске Московской обл. изготовлен в 1978-1980 гг. СМИ снабжен пультом управления (конструктор Б. X. Нестеренко), выполненным на базе клавиатуры электрооргана "Лель". Ползунковые регуляторы (персменные резисторы СПЗ-23) предназначены для плавного управления яркостью в каждом световом канале. Клавиатуру используют для дискретного выведения проекции на экран, для вспышек и световых "аккордов". Имеется также педаль плавного регулирования общей яркости всей светодинамической композиции. Независимо оттого, сколько в эпизоде занято ячеек, все изображения могут быть плавно "уведены" с экрана общей педалью.


Рисунок 49

    Рассмотрим некоторые электронные узлы этого СМИ. Узел управления яркостью (рис. 49) собран на печатной плате, укрепленной непосредственно в проекционной ячейке для предельного укорочения токовых цепей. Узел питается сетевым напряжением 220 В через резисторы R4 и R5. Это напряжение выпрямлено диодным мостом VD4 - VD7. На транзисторы поступают трапецеидальные импульсы напряжением 24 В. Сигнал управления напряжением + (0-8) В подведен к базе управляющего транзистора VT2. Параллельно эмиттерному переходу транзистора V72 подключен транзистор VTI в диодном включении, образуя генератор тока. Далее сигнал поступает на аналогичную пару транзисторов VT3 и VT4. Если управляющий сигнал отрицателен, пару VTI, VT2 можно исключить.
    С увеличением управляющего сигнала открывается транзистор VT4 и начинается заряд конденсатора СУ. Как только напряжение на конденсаторе достигнет порогового уровня язабатывания одн опер входного транзистора VT5, он открывается, конденсатор С1 разряжается через первичную обмотку трансформатора 77 (применен импульсный трансформатор ТМ5-27, но можно использовать и любой другой с коэффициентом трансформации 3:1). Со вторичной обмотки трансформатора короткие импульсы тока поступают на управляющий электрод симистора, он открывается до конца полупериода. Таким образом реализовано фазовое управление мощностью нагрузки (лампы накаливания). При отсутствии управляющего сигнала на нить лампы нужно подавать начальное напряжение, достаточное для того, чтобы нить довести до красного каления, - это позволяет линеаризировать характеристику управления. Начальное напряжение подбирают резистором R2. В некоторых проекционных ячейках вместо ламп на 220 В, 150 Вт применены лампы на 127 В, работающие в режиме перекала. На них подают напряжение не более 160 В. Предельный уровень управляющего выходного напряжения устанавливают подборкой резистора R1.
    Узел управления частотой и направлением вращения барабанов формообразовате-лей показан на рис. 50. С движка переменного резистора R! управляющий сигнал через резистор R4 подастся на инвертирующий вход ОУ DAL Напряжение на инвертирующем входе фиксировано на уровне около 4 В делителем R2R3. К выходу ОУ чере? резистор R 1 включен усилитель мощности на транзисторах VT1 к VT2. С выхода этого усилителя ток поступает на обмотку реверсивного двигателя МКМ-2 постоянного тока. Режим управления частотой вращения выбран таким, чтобы при среднем положении движка переменного резистора R1 ротор электродвигателя не вращался. При повороте ручки этого резистора, например влево ротор должен вращаться влево, причем частота вращения его прямо пропорциональна смещению движка от среднего положенью.


Рисунок 50

    По такой же схеме собран и привод узла управления масштабом. Разница заключается лишь в том, что резистор R3 установлен непосредственно в ячейке и его движок связан с механизмом перемещения лампы. Как только ручкой управляющего резистора R1 на пульте управления вводят небольшое рассогласование, электродвигатель Ml начинает перемещать лампу и одновременно передвигать движок резистора R3 до тех пор, пока рассогласование не будет скомпенсировано, и ротор двигателя остановится.


Рисунок 51

    Завершая описание СМИ "Полтава-2", следует констатировать, что вполне возможно создание габкого светоинструментария, пусть и не претендующего на универсальность, но способного реализовать необходимое многообразие сложных свето динамических композиций (рис. 51).

11. СМИ на базе стандартных слайдпроекторов

    В радиотехнической литературе последних лет, прежде всего в журнале "Радио", появился ряд описаний простейших так называемых цветомузыкальных инструментов (ЦМИ), обеспечивающих лишь изменение яркости и цвета экрана. В них с помощью современных электронных средств решаются, по сути дела, те же задачи, которые ставили себе в начале века пионеры светомузыки, ограничивающие возможности нового искусства бесформенным цветовым сопровождением музыки. Но решения этих простых задач изобретатели достигают применением довольно сложных схем и конструкций, которые неоправданно удостаиваются порою их авторами высокого звания "цветомузыкальный синтезатор", "цветомузыкальный орган" [15, 18, 19, 32; 33]. Опыт показывает, что удовлетворительную цветовую динамику можно получить более доступными средствами, предполагающими, правда, некоторые сложности при исполнении, -с помощью двух обычных стандартных диапроекторов, направленных на один экран (рис. 52, а). При этом следует пользоваться диапроекторами, которые могут работать с диапозитивными кассетами и специальным двуканальным регулятором яркости, обеспечивающим работу в режиме "наплыва". Если в диапозитивные рамки поместить не слайды, а чистые светофильтры, и включать диапроекторы поочередно, плавно меняя при этом яркость в каждом из них от минимума до максимума и обратно (рис. 52, б), можно получить практически любую динамику [Скорость смены цвета на экране ограничена техническими возможностями диапроекторов. - Прим, ред.] цвета на экране. Естественно, смена слайда в каждом диапроекторе происходит в то время, Когда его проекционная лампа выключена. Последовательность смены цветов устанавливают заранее выбором порядка светофильтров в кассетах диапроекторов.


Рисунок 52                                                             Рисунок 53

    Такой СМИ удобен тем, что цветовые слайды можно легко менять, переставлять в кассете, корректируя цветовую партию произведения. Число слайдов в кассете проектора обычно равно 36 или 50, так что удвоенного их числа, если учесть оба диапроектора, достаточно для сопровождения довольно продолжительных музыкальных произведений. Светофильтры используют или пленочные триацетатные, или желатиновые.
    Возможности СМИ на базе слайдпроекторов, как мы видим, ограничены, и если уж работать с бесформными цветными слайдами, то намного эффектнее выглядит картина на экране при использовании нескольких диапроекторов с разнесенными и перекрывающимися полями проекций (рис. 53). Меняя яркость каждого из проекторов, можно получить интересные сочетания цветов в зонах перекрытия проекций. Картины получаются похожими на композиции голландского художника П. Мондриана, поэтому подобное устройство, испытанное в СКВ "Прометей" несколько лет назад, и получило столь необычное название (оно описано в [25, с. 125]).
    Но все же диапрсекционные СМИ лучше использовать для воспроизведения более сложных световых композиций, сохранив режим "наплыва", только при этом необходимо внести в них элементы формы, рисунка (для светомузыки этот рисунок обычно абстрактный). Абстрактные по рисунку слайды можно изготовитьв домашних условиях. Их обычно рисуют фломастером, цветным лаком (цапонлаком, глифталевым) на фотопленке со смытым или отфиксированным без проявки эмульсионным слоем. Рисунок можно не только выполнять "от руки", но и формировать различными химическими, механическими и оптическими способами. Изысканные слайды морозных узоров и инея легко изготавливают, например, с помощью раствора гипосульфита или мочевины, нанесенного на пленку (или на тонкое стекло). После высыхания этот узор следует защитить вторым слоем прозрачной пленки. Интересный результат дает мозаичная аппликация из небольших кусков светофильтров, зажатая между двумя тонкими стеклами. В некоторых случаях ее можно кашетировать фигурной рамкой из черной бумаги. И, конечно, удобнее всего создавать абстрактные слайды обычным фотоспособом. Для этого лучше всего использовать обращаемую цветную пленку "Орвохром" или "110". Объектом съемки могут служить не только нарисованные абстрактные картины, узоры или орнаменты, но и объекты природы, снятые в необычном виде, - крупная структура древесной коры, гранита, песка, водной поверхности, световых бликов в листве, микросрезы растений, микроструктура металла, жидких кристаллов и т. д. При этом следует пользоваться различными специальными съемочными насадками, фильтрами, призмами, применять прием "смазывающего" движения при съемке, расфокусировку. Большой запас возможностей трансформации изображения кроется и в использовании специальных приемов обработки пленки и печати -соляризация, двойная экспозиция при копировании, негативная перепечатка и т. д. - здесь поможет вам в работе журнал "Советское фото".
    Внимательный взгляд светохудожника может открыть вокруг практически бесконечное количество изобразительного материала - не только для фотосъемки, но и для непосредственного помещения в диапозитивную рамку. Возьмите, к примеру, обычный осенний лист, прогладьте теплым утюгом, обмакните в прозрачный цапонлак, чтобы "зафиксировать" его - и вот на экране причудливая паутина тонких прожилок листа, которая в светокомпозиции может изменить цвет, трансформироваться в рябь водной поверхности и т. д. Весьма осторожно, только там, где это оправдано художественным замыслом, можно вводить в светомузыкальную композицию и откровенно узнаваемые изображения реальных объектов — солнца, цветов, людей и т. д.
    Впрочем, музыкальный монтаж можно построить целиком на реальных изображениях (включая и копии картин художников). Результаты подобного аудиовизуального синтеза напоминают кино, только изображение здесь всегда с большей разрешающей способностью и имеется возможность сиюминутного перемонтажа кадров (слайдов). Подобная форма художественного воздействия получила специальное название "слай-домузыкальные спектакли" и широко применяется сейчас в практике дискотек, в театре, на эстраде, при оформлении выставок. Опыт работы в этом жанре ценен не только сам по себе, но может подготовить и к более сложному визуально-музыкальному синтезу в светомузыке.
    Интересный эффект, подобный известному зрелищному приему "Латернамагика", получается, если слайд-композиция содержит изображения актеров, находящихся при этом "живьем"на сцене. В театральных слайд-композициях по сравнению со светомузыкальными задача все же облегчается, так как в "арсенал" изобразительных средств можно включить и покупные слайды. Но и в этом случае остается место для творческой выдумки светохудожника. Например, отпечатайте с цветного слайда цветка черно-белый позитив, вставьте их в смежные кассеты - и на ваших глазах черно-белая фотография розы на экране медленно становится цветной. А это изображение затем растворится в чистом цвете и погаснет (в кассетах соответственно -светофильтр, а за ним -непрозрачный слайд из черной бумаги). Просто, но эффектно! А если одуванчик превращается в солнце или в лицо девушки, из структуры коры медленно "проявляется" изрезанное морщинами лицо старика, которое затем превращается в морщины гор, снятых со спутника или с самолета - налицо яркий и очевидный художественный образ юности и вечности.
    Очень впечатляет в слайдомузыкальных программах сочетание в режиме "наплыва" абстрактных и реальных слайдов. И хотя во всех этих случаях на экране нет реального движения световых образов в плоскости экрана, при умелом совмещении слайдов его заменяет временная динамика изображения - конечно, здесь нужен своеобразный талант, вкус, умение согласовывать пластику совмещаемых изображений, и не только по контуру рисунка и сюжету, но и по плотности, и но колориту. Впрочем, не исключено и дополнение слайдовых музыкальных композиций реальной динамикой световых бликов, пятен, волн, как это делает, например, светохудожник С. М. Зорин, оживляя реальные пейзажи движением "облаков", мерцанием воды, вспышками молний. Для этого он дополняет диапроекционные приборы евстоживописными устройствами, которые описаны в предыдущем параграфе.
    В подобных аудиовизуальных комплексах желательно использовать диапроекторы с дистанционным управлением сменой слайдов. (Сводный перечень характеристик отечественных диапроекторов см. в [14].) Сами приборы необходимо немного доработать от проекционных ламп сделать отдельные выводы для подключения их к регулятору напряжения. В "Протоне" и "Кругозоре" эти переделки минимальны, так как в них установлены проекционные лампы на 220 В. А в "Альфе", "Свитязе-авто". "Пеленге" применены мощные низковольтные лампы (24 В, !50 Вт), и поэтому в регуляторах, в этом случае, каждый БУМ подключен к силовой обмотке трансформатора соответствующего диапроектора. В диапроекторах с ручной сменой слайдов никаких переделок не требуется, их подключают непосредственно к выходу регулятора. Но но время демонстрации слайцопрограммы их должен обслуживать сам оператор.
    В экспериментах, проводившихся в МГУ (г. Москва), С. М. Зорин использовал модернизированные им диапроекторы "Альфа", а регуляторами напряжения служили обычные автотрансформаторы ЛАТР. Широкий интервал вращения ручки управления обеспечивает медленное и плавное изменение яркости лампы диапроектора. В СКВ "Прометей" выбрали другой вариант установки, испытанный в действии в нескольких конструктивных решениях [44]. Остановимся на одном из них.
    Принципиальная схема двух канального электронного регулятора напряжения для работы с диапроекторами "Протон" изображена из рис. 54. Работа подобного устройства управления тиристорами уже была представлена ранее на рис. 49. В этом же регуляторе яркостью источников света управляют в каждом канале независимо переменными резисторами R6 и R8, ручки которых вынесены па лицевую панель. Устройство управления питается пульсирующим трапецеидальным напряжением, формируемым стабилитроном VD10. В начале каждого полупериода, когда амплитуда сетевого и питающего трапецеидального напряжения равна нулю, происходит одновременное закрывание тиристоров и од но переходных транзисторов и регулятор возвращается в исходное состояние. Очередное открывание этих элементов происходит уже тогда, когда управляющее напряжение достигнет порогового уровня.
    Таким образом, в течение каждого полупериода будет происходить открывание тиристора с определенной временной задержкой относительно начала каждого полупериода. Яркость лампы, включенной последовательно с тиристором будет при этом изменяться в зависимости от этой временной задержки- чем она меньше, тем ярче светилампа проектора, и наоборот. Регулируют задержку переменными резисторами R6.


Рисунок 54

    Чтобы смена слайда производилась в тот момент, когда лампа проектора выключена, переключателем, например SA.2, запускают времязадающее устройство на транзисторе VT1, замыкающее на 1 с контактами реле К1.1 цепь смены слайдов. Конструктивно переключатели SA2 и SA3 установлены так, что их контакты замыкаются в крайних положениях соответствующего переменного резистора. Для возможности мгновенного включения одного изображения в наложении на другое в каждом канале дополнительно предусмотрены соответствующие кнопочные выключатели SB1 н8В2 (например, КМ1-1).
    Проекционные лампы ЕЫ и EL2 включены в канале, последовательно с тиристором. Поскольку тиристор пропускает только один полупериод напряжения, для нормальной работы ламп их необходимо питать от отдельного двух полу периодного выпрямителя (на схеме VD6 - VD9) или применить встречно-параллельное включение двух тиристоров в каждом канале. Самым же оптимальным вариантом является использование симметричных тиристоров - симисторов КУ208В или КУ2О8Г. Тогда можно обойтись без дополнительного выпрямителя.
    Трансформатор 77 должен обеспечить на вторичной обмотке переменное напряжение не менее 40 В, амплитуда пульсирующего напряжения в цепи питания регуляторов — около 20 В, в цепи питания времязадающих устройств - 18 В. Реле К1 и К2 РЭС15, паспорт РС4.591.004П2. Импульсные трансформаторы Т2 и ТЗ - серийные, например И46 или И-47. Их можно намотать и самостоятельно на кольцах типоразмера КЮхбХб из феррита 1000НН; в каждой обмотке по 40 витков провода ПЭЛШО 0,12.
    Конструктивно этот регулятор выполняют в виде небольшого пульта (или встраивают в общий пульт многофункционального назначения). Ручку каждогр из регуляторов удобно сделать в виде длинного рычага, который сопряжен с осью переменного резистора через зубчатую передачу; можно использовать переменные резисторы СПЗ-23а. Переключатели КМ1-1 (SA2, SA3) устанавливают под рычагом так, чтобы в нижнем его положении, когда лампа в канале погашена, происходила автоматическая смена слайда после нажатия рычага на кнопку. Регулятор может быть функционально расширен для управления не двумя, а четырьмя или восемью диапроекторами - в этом случае появляется возможность значительного усложнения композиции. Естественно, при этом удобнее работать с дополнительной системой памяти на магнитной ленте, на которой заранее записывают сигналы управления каждым из диапроекторов.
    Возможности подобных многоканальных диапрсекционных СМИ в сочетании с полиэкранной экспозицией проверены и за рубежом (под руководством светохудожника Т. Шусмита их активно и эффективно использует нью-йоркский "Ансамбль светомузыки", который пользуется проекционной аппаратурой "Кодак"). Все подобные устройства на базе диапроекторов с автоматической сменой слайдов необходимо тщательно отрегулировать, добиться четкой и бесшумной работы автоматики. В идеальном варианте проекторы помещают в звуконепроницаемый бокс.
    Естественно, возможности диапрсекционной техники, использующей автоматическую смену слайдов, не ограничиваются тем, что было описано выше. На этой базе возможно создание оригинальных СМИ, обеспечивающих динамику изображения в плоскости экрана.
    Рассмотрим один из вариантов светоэффектного устройства (конструкторы С. Зорин, Б. Нестеренко), работающего совместно с модернизированным слайдпро-ектором "Свитязь" (рис. 55,а).
    Прежде всего необходимо изготовить к этому проектору универсальный держатель объектива со стандартной резьбой 42 мм. Это позволяет применять любые фотообъективы с нужным в каждом конкретном случае фокусным расстоянием. Верхняя крышка — от диапроектора "Свитязь-М", так как в ней имеется окно для приставки, позволяющей показывать диафильмы. Вместо этой стандартной приставки в тех же габаритах разработана другая, позволяющая превратить прибор в светоэффектный проектор. Внутри приставки от дополнительного электродвигателя может с разной частотой и в разные стороны вращаться кольцо, например, из негативной черно-белой фотопленки с нанесенным на нее контактным способом рисунком. В кадровом окне противоположные стороны этого кольца поджаты друг к другу и движутся навстречу одна другой на расстоянии около 1,5 мм. Объектив фокусируют на точку между слоями, чтобы слегка размыть изображение от каждого слоя, иначе оно будет слишком "жестким" (резким по контурам). Дополнительный блок позволяет дистанционно управлять сменой цвета формы. Для этого сигналами с пульта приводится во вращение диск из шести разноцветных секторов, перекрывающих луч, выходящий из объектива. Диск из светофильтров вращается от отдельного электродвигателя в разные стороны с разной частотой. Блоки, управляющие яркостью лампы и вращением роторов обоих электродвигателей, собраны на печатных платах и смонтированы также внутри проектора.


Рисунок 55

    Еще большие возможности открываются, если в таких проекторах с автоматической сменой слайдов использовать совмещенные возможности формообразования, представленные на рис. 15 и 17. Конечно, это требует серьезной их доработки, вплоть до изменения оптической системы. В СМИ теневой проекции, как было показано ранее, каждый из проекторов, содержащий одного вида пару ротор-статор, обеспечивает определенный и повторяющийся светодинамический эффект. Дня того чтобы получить новую картину, надо прежде всего сменить статор, определяющий общую структуру изображения, что обычно делают вручную, т.е. только во время паузы между музыкальными произведениями. Вследствие этого светохудожник вынужден выходить из положения тем, что оперирует большим числом заранее подготовленных проекционных ячеек с различными статорами (роторы у них тоже могут быть разными, но их вариантность обычно не столь велика, как у статоров).
    Если изготовить ротор так, Чтобы его просвечиваемая зона размещалась близко к фокальной плоскости фильмового канала слайдпроектора (рис. 55. б), то статоры можно разместить в рамках от диапозитивов и подавать их в фильмовой канал автоматически, сигналом с пульта. И статор, и ротор изготовляют из контрастной фотопленки, черной бумаги, в которой необходимый рисунок вырезают или выжигают, либо из тонкой медной фольги. В диапозитивную рамку статор, естественно, помещают со своим светофильтром. Таким образом, один модернизированный слайдпроектор может заменить 36 (или 50) обычных последовательно действующих крупногабаритных световых ячеек теневой проекции. Разумеется, такой проектор должен работать в режиме "наплыв", совместно с несколькими другими подобными проекторами, имеющими роторы с иным рисунком. Добавим сюда возможность реверса и изменения скорости роторов. Несколько проекторов подобного рода позволят обеспечить воспроизведение сложнейших светодинамических композиций большой продолжительности.


Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться, либо войти на сайт под своим именем.

Обсудить на форуме


На момент добавления Светомузыка ч. 2 все ссылки были рабочие.
Все публикации статей, книг и журналов, представлены на этом сайте, исключительно для ознакомления,
авторские права на эти публикации принадлежат авторам статей, книг и издательствам журналов!
Подробно тут | Жалоба

Добавление комментария

Ваше имя:*
E-Mail:*
Текст:
Вопрос:
Решите уравнения x+2x=789
Ответ:*
Введите два слова, показанных на изображении:



Опрос

Ваши предпочтения в TRX


Одинарное преобразование
Двойное преобразование
Прямое преобразование
SDR
Другое
Мне всё равно

Популярные новости
Календарь новостей
«    Сентябрь 2017    »
ПнВтСрЧтПтСбВс
 123
45678910
11121314151617
18192021222324
252627282930